How naked mole rats conquered pain—and what it could mean for us

first_imgGary Lewin, a neuroscientist at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association in Berlin, began working with naked mole rats because a friend in Chicago was finding that the rodent’s pain fibers were not the same as other mammals’. In 2008, the studies led to the finding that naked mole rats didn’t feel pain when they came into contact with acid and didn’t get more sensitive to heat or touch when injured, like we and other mammals do. Lewin was hooked and has been raising the rodents in his lab ever since. They are a little more challenging than rats or mice, he notes, because with just one female per colony producing young, he never really has quite enough individuals for his studies.So instead of studying the whole animals, he began isolating single nerve cells from the mole rats and investigating them in lab dishes to track the molecular basis of the rodent’s pain insensitivity. The pain pathway is kicked off when a substance called nerve growth factor is released by injured or inflamed cells. This factor binds to a protein on the pain-cell surface, a so-called receptor named TrkA, which relays the “pain” message throughout the cell. In us and other mammals, that message increases the activity of a molecular pore, called the TRPV1 ion channel, causing the cell to become more sensitive to touch or heat. “So the cell says ‘It hurts more,’” Lewin explains.But that doesn’t happen in naked mole rats. Lewin evaluated the workings of the animal’s pain pathway components by mixing them with those of standard rats and putting the combinations in immature frog eggs. For example, the naked mole rat TRPV1 channel sensitized the egg to acid and heat when the rat TrkA was put into the egg cell with it. Thus, Lewin and his colleagues narrowed down the breakdown in this pathway to the TrkA receptor itself. The naked mole rat version of TrkA failed to activate the ion channel as efficiently as the rat version of TrkA, Lewin and his colleagues reveal today in Cell Reports.When they compared the amino acid sequence of naked mole rat protein, the researchers found that three of these protein building blocks were different from the rat version and one was also different from the same protein in other mole rats. That particular difference made the naked mole rat receptor inefficient at relaying the pain sensitization signal.Similar defects are seen in people, says Clifford Woolf, a neuroscientist at Boston Children’s Hospital and Harvard Medical School who was not involved with the work. But contrary to the portrayal of the unstoppable blond giant in The Girl Who Played with Fire, a mystery thriller by Swedish writer Stieg Larsson, “if an individual has mutations that reduce the capacity to feel pain, that’s extremely dangerous,” Woolf says. “It’s not a relief from pain; it’s a disaster,” because the body cannot detect when it’s hurt.But for naked mole rats, this drop of efficiency likely represents a good compromise, Lewin explains. Nerve growth factor and the receptor are important to the proper development of the nervous system. Thanks to this less efficient, albeit still functioning, receptor, the naked mole rat still winds up with an adequate nervous system, but with fewer pain nerve cells. That, in turn, could reduce the energy the animal needs to fuel its nervous system, likely useful in an environment where starvation is common and the body wants to conserve energy. “This illustrates how big steps in evolution can sometimes proceed from a single small mutation,” Zakon says.The naked mole rat work could inspire better pain treatments. “Traditional medical interventions for pain have frequently attempted a brute force approach, which can cause unintended bad side effects,” Park says. For example, neurologists have tried pain drugs that neutralize nerve growth factor and control pain without the use of opioids, say in arthritis. But sometimes the treatment leads to damage to the knee joint. “Using what has been learned from the Lewin paper,” it might be possible to tweak the receptor for nerve growth factor to limit this side effect, says Lorne Mendell, a neuroscientist at the State University of New York at Stony Brook. Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Although it has a face—and body—that only a mother could love, the naked mole rat has a lot to offer biomedical science. It lives 10 times longer than a mouse, almost never gets cancer, and doesn’t feel pain from injury and inflammation. Now, researchers say they’ve figured out how the rodents keep this pain away.“It’s an amazing result,” says Harold Zakon, an evolutionary neurobiologist at the University of Texas, Austin, who was not involved with the work. “This study points us to important areas … that might be targeted to reduce this type of pain.”Naked mole rats are just plain weird. They live almost totally underground in colonies structured like honey bee hives, with hundreds of workers servicing a single queen and her few consorts. To survive, they dig kilometers of tunnels in search of large underground tubers for food. It’s such a tough life that—to conserve energy—this member of the rodent family gave up regulating its temperature, and they are able to thrive in a low-oxygen, high–carbon dioxide environment that would suffocate or be very painful to humans. “They might as well be from another planet,” says Thomas Park, a neuroscientist at the University of Illinois, Chicago. Click to view the privacy policy. Required fields are indicated by an asterisk (*)center_img Email Sign up for our daily newsletter Get more great content like this delivered right to you! Countrylast_img

Leave a Reply

Your email address will not be published. Required fields are marked *